
Complex Analysis Lecture Notes

Fall 2024

0 Introduction
This is the lecture note for Complex Analysis, 2024 fall, by Hanlong Fang. Typist: Yuetong Zhang.

This is not exactly the same as the paper version, and I (zyt) did some edits for typesetting and language.
I also omitted some not very important part. Notice there are many ”trivial by calculation” thing, here are
the parts when you really just need to do it algebraically. The important parts are not here. If I say ”see Stein
pg xx”, it could still be on the paper version (actually most of the time) of the lecture note, but I don’t have
enough time to copy all of them here.

Also, try this linked function to see the graph!

f(z) = sin z

1 Lecture 1 (9.10) - History and Definitions of Complex Numbers

2 Lecture 2 (9.12) - Cauchy Integral

3 Lecture 3 (9.24) - Equivalent Concepts of Holomorphic Functions
Cauchy, 1814, the functions studied have the following special properties: Write

f(x) = P (x+ iy) + iQ(x+ iy)

then

Formula 3.1 (Cauchy-Riemann).

∂P

∂x
=

∂Q

∂y

∂P

∂y
= −∂Q

∂x

Yet Cauchy assumes Q = 0 when y = 0, and in Euler’s eyes we can do the expansion
∞∑

n=0

anx
n

locally on R, then all an are real.
Q1: What are other functions that satisfy the C-R equations?
A1: all these power series

∞∑
n=0

anz
n

1

https://samuelj.li/complex-function-plotter/#sin(z)


where an are complex. If then write f = P + iQ, then

P (z) =
1

2

(∑
anz

n +
∑

ānz̄
n
)

Q(z) =
1

2i

(∑
anz

n −
∑

ānz̄
n
)

to verify the C-R equation, consider taking derivative on each term
∂P

∂x
=

1

2

(∑
nanz

n−1 +
∑

nānz̄
n−1
)

the else 3 are similar.
Q2: Any more?
A2: No. Consider the power series

f(z) = f(x+ iy) =

∞∑
d=0

d∑
n=0

an,d−nz
nz̄n−d

by solving the C-R equations:
0 =

∂P

∂x
− ∂Q

∂y
=

(*full calculation later) Therefore, an,d−n = 0 if d− n ≥ 1, then
∞∑

n=0

an,0z
n

Therefore, (a diagram)
New observation: if view z and z̄ as independent variables, we observe that

1

2

(
∂

∂x
+ i

∂

∂y

)
(P + iQ) =

1

2

(
∂P

∂x
− ∂Q

∂y

)
+

i

2

(
∂P

∂y
+

∂Q

∂x

)
=

∂

∂z̄

(∑∑
anz

nz̄d−n
)
=

∂f

∂z̄

for z similar. that is
1

2

(
∂

∂x
+ i

∂

∂y

)
=

∂

∂z̄

1

2

(
∂

∂x
− i

∂

∂y

)
=

∂

∂z

or its inverse
∂

∂x
=

∂

∂z̄
+

∂

∂z̄
∂

∂y
= −

(
∂

∂z̄
− ∂

∂z

)
i

notice this is consistent with the differential

dz = dz + idy
dz̄ = dx− idy

dx =
1

2
(dz + dz̄)

dy =
1

2i
(dz − dz̄)

Also, calculate

df =
∂f

∂x
dx+

∂f

∂y
dy

=

(
∂

∂z̄
+

∂

∂z̄

)
f
1

2
(dz + dz̄)−

(
∂

∂z̄
− ∂

∂z

)
if

1

2i
(dz − dz̄)

=
∂f

∂z
dz + ∂f

∂z̄
dz̄
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Therefore, if
∂f

∂z̄
≡ 0

then
df
dz =

∂f

∂z

which means f ′(z) exists.
(a big diagram)
All these definitions inherit from R2:

Definition 3.1 (convergence).

Definition 3.2 (pointwise convergence).

Definition 3.3 (uniform convergence).

All these proven in Analysis II, but are the complex codomain version:

Theorem 3.1 (”Thm A”). If fn : [a, b] → C,
∑

fn ⇒ f , each fn is continuous, then

1. f is continuous

2. integration of f on [a, b] can be done term by term∫
f =

∫ ∑
fn =

∑∫
fn

Theorem 3.2 (”Thm B”). If fn : [a, b] → C,
∑

fn → f , each f ′
n is continuous and

∑
f ′
n is uniformly

convergent, then we can take derivative by term

f ′(x) =
d
dx
∑

fn =
∑ d

dxfn

Definition 3.4 (power series). A power series is a series of the form
∞∑

n=0

an(z − z0)
n (an, z0 ∈ C)

These also follows the very same proof as Analysis II :

Theorem 3.3. Let
∞∑

n=0

an(z − z0)
n (an, z0 ∈ C)

be a given power series. ∃!R ≥ 0 (possibly +∞) such that if |z − z0| < R, the series converges, and if
|z − z0| > R, the series diverges. Furthermore, the convergence is uniform and absolute on every closed
disk in {|z − z0| < R}. Moreover, if we use the convention that 1/0 = ∞ and 1/∞ = 0, then R is given
by Hadamard’s formula

1

R
= lim sup |an|1/n

the number R is called the radius of convergence of the power series, and the region |z| < R is called the
disk of convergence.
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Corollary 3.4. The radius of convergence of
∞∑

n=0

nanz
n−1

is the same as
∑

anz
n.

Proposition 3.5. Let
∞∑

n=0

anz
n

be a power series with radius of convergence R > 0. Then it satisfies the C-R equation.

Proof.
∂P

∂x
− ∂Q

∂y
= 0

⇐⇒ 1

2

∂

∂x

(∑
anz

n +
∑

ānz̄
n
)
=

1

2i

∂

∂y

(∑
anz

n −
∑

ānz̄
n
)

by corollary and theorem B, we have

LHS =
1

2

(∑
an

∂zn

∂x
+
∑

ān
∂z̄n

∂x

)
=

1

2

(∑
nanz

n−1 +
∑

nānz̄
n−1
)

similarly
RHS =

1

2i

(∑
nanz

n−1i+
∑

nānz̄
n−1i

)
then LHS = RHS. similarly

∂P

∂y
+

∂Q

∂x
= 0

Remark. f ′(z) =
∑

nanz
n−1, · · ·

Proposition 3.6. Let f be a real valued function of two variables x, y defined on an open neighborhood
U of (x0, y0) ∈ R2. If both partial derivatives ∂f

∂x ,
∂f
∂y are continuous on U , then f is differentiable at

(x0, y0).

Proof. see Analysis III

Definition 3.5. Let f be a complex valued function on Ω ⊂ C. We call f is complex differentiable at
z0 = x+ iy if ∃L ∈ C,

lim
z→z0

∣∣∣∣f(z)− f(z0)

z − z0
− L

∣∣∣∣ = 0

Proposition 3.7. Suppose f = P + iQ complex valued on Ω ⊂ C satisfy C-R equations, and that
∂P/∂x , ∂P/∂y , ∂Q/∂x , ∂Q/∂y are continuous on Ω, then f is complex differentiable on Ω.
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Proof. (*the full calculation is too long and trivial)
Write z = x+ iy, then we can write P,Q as linear approximations with E1, E2 = o(|∆(x, y)|).
guess L algebraically and calculate the limit, simplify with the C-R equation and find that the
remaining term is ∣∣∣∣E1 + E2

∆(x, y)

∣∣∣∣→ 0

Remark. C-R equation ⇐⇒
∂f

∂z̄
= 0

Jacobian of f is [
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

]
the C-R equation is [

−1
1

] [∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

] [
1

−1

]
=

[
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

]

4 Lecture 4 (9.26)

Definition 4.1. A continuous curve in C is a continuous map Γ : [a, b] → C. The curve is called
piecewise C1 if we can divide [a, b] into finitely many subintervals s.t. Γ ′(t) exists on each open interval
and continuous on each closed interval (limx→a+

i
Γ ′(t) and limx→a−

i+1
Γ ′(t) both exist)

Remark. Stein required Γ ′ ̸= 0

(also, define the algebra of the curves −Γ and Γ1 + Γ2. The definition is pretty trivial but troublesome
to write)

Definition 4.2. If f is defined on an open set Ω ⊂ C and Γ : [a, b] → C is a piecewise smooth curve
with Γ ([a, b]) ⊂ Ω, then define the integral∫

Γ

f dz =
∑∫ ai+1

ai

f(Γ (t))Γ ′(t) dt

Proposition 4.1. For a reparametrization of a curve

[a, b] C

[ã, b̃]

Γ

α
Γ̃

where α(a) = ã and α(b) = b̃ and α′ > 0 everywhere, then∫
Γ

f(z) dz =

∫
Γ̃

f(z) dz

Proof. trivial by substitution
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Remark. Stein defined equivalence of curves here

Theorem 4.2 (Jordan curve theorem).

Ω be a domain with piecewise smooth boundary Γ = Γ1 + Γ2 + · · ·+ Γn, such that Ω is always on the left
of Γ . X be a open neighborhood of Ω.

Theorem 4.3 (Green’s theorem). g, h ∈ C1(X) then

Formula 4.1. ∮
Γ

g dx+ hdy =

∫∫
Ω

(
∂h

∂x
− ∂g

∂y

)
dx dy

Proposition 4.4. Let f ∈ C1(X) and satisfy C-R equations. then

Formula 4.2. ∮
Γ

f(z) dz = 0

Proof. G = f and F = −if , then∮
G dx+ F dy =

∫∫ (
∂f

∂x
− ∂(−if)

∂y

)
dx dy =

∫∫ (
∂

∂x
+ i

∂

∂y

)
f dx dy = 0

Proposition 4.5 (Goursat). Suppose f is defined on X and f ′ exists everywhere on X, then∫
Γ

f(z) dz = 0
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Proof. (only sketch here. this sketch I(zyt) wrote myself according to the paper version.)

1. For rectangle (or triangle or whatever, all the same) case, see Stein’s book (pg 34 thm 1.1)

2. For the general case, first cut the region with line segments such that it’s a union of simply
connected regions. Then, we have ∮

∂Ω

=
∑∮

∂Ωi

therefore we just prove the simply connected version.

3. For a simply connected region, prove that it has a primitive.

4. First guess the primitive. By the simple connectedness, any two polygonal paths connecting
two points can be transformed by adding and subtracting finite number of rectangles. (proof
by combinatorics) Therefore, integral along these paths are equal. Pick z0 and integrate
along the polygonal path, and reach every point (we can do this, and proof is not shown in
the paper version. My proof is: By path connectedness cover each point on the path with a
disc in the open set, then finite subcover, then polygonal path) of X to get F , and this is
well defined.

5. Verify that F actually works. For another point z+h in a disk around z, extend the path in
the disk with one horizontal and one vertical. Then imitate Stein pg 38.

5 Lecture 5 (10.8) - Cauchy integral formula and some applications
(I edited a lot here, because time is limited and I think there are simpler expressions)

If ∂Ω = C1 − C0 (... some conditions), then∮
C1

f(z) dz =

∮
C0

f(z) dz

Now assume that ∂Ω = C, take a ∈ Ω and cut off a disc Cr around it. Then∮
∂Ω

f(z) dz =

∮
∂Cr

f(z) dz

where g is holomorphic on a neighborhood U \ Cr of Ω \ Cr. Take holomorphic f on U and f(z)/(z − a) is
holomorphic on U \ Cr. ∮

∂Ω

f(z)

z − a
dz =

∮
∂Cr

f(z)

z − a
dz

then see Stein pg 40. We get:

Theorem 5.1. Suppose f is holomorphic on X, then

Formula 5.1 (Cauchy’s integral formula).

1

2πi

∮
∂Ω

f(z)

z − a
dz = f(a)

Remark. This is a ”kernel” like Poisson kernel, Bergman kernel, Szegö kernel, ...
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Theorem 5.2. Suppose Ω = {|z − a| < R} and f has a complex derivative at each point of Ω, then

f(z) =

+∞∑
n=0

cn(z − a)n

is a series of functions convergent on Ω, where

cn =
1

2πi

∮
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ

where 0 < r < R, n ≥ 0.

Proof. see Stein pg 49 thm 4.4

Remark. cn is independent of r. The power series is unique.

Theorem 5.3. Suppose f is holomorphic on X, then

Formula 5.2.
f (k)(a) =

k!

2πi

∮
∂Ω

f(z)

(z − a)k+1
dz

Proof. first a lemma

Lemma 5.4. Suppose f is complex valued on D = (α, β)×(Γ, δ) ⊂ R2, ∂f/∂x is continuous
on D, then LHS exists and

d
dx

∫ d

y=c

f(x, y) dy =

∫ d

y=c

∂

∂x
f(x, y) dy

Proof. Analysis III, omit

Notice that
∂

∂x

(
f(ζ)

ζ − z

)
=

f ′(ζ)

(ζ − z)2

is continuous jointly in z ∈ U and ζ ∈ ∂Ω, By the above lemma and Cauchy integral formula, we
have

∂

∂x
f(z) =

1

2πi

∮
∂Ω

∂

∂x

(
f(ζ)

ζ − z

)
dζ =

1

2πi

∮
∂Ω

f ′(ζ)

(ζ − z)2
dζ

f ′(z) =
1

2

(
∂

∂x
− i

∂

∂y

)
f(z) =

∂

∂x
f(z) =

1

2πi

∮
∂Ω

f ′(ζ)

(ζ − z)2
dζ

∂f

∂z̄
≡ 0

then do it repeatedly

Proof. I(zyt): why not just use the fact that it’s a power series??
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Theorem 5.5 (Morera). Suppose f is a continuous function in open disc D such that for any rectangular
boundary Γ contained in D we have ∮

Γ

f(z) dz = 0

Then f has complex derivatives in D.

Proof. I(zyt): why do it again?? Isn’t this basically part of the proof for Cauchy-Goursat??

Definition 5.1. Define the following as holomorphic functions on Ω:

• f is complex analytic

• f is complex differentiable

• f satisfies the C-R equation

• f integral = 0 for any triangular path

Corollary 5.6. If {fn} holomorphic and fn ⇒ f , then f holomorphic

Proof. For any point a ∈ Ω exists an open subset Da s.t. Da ⊂ Ω. Then f is continuous. For any
rectangular boundary Γ ∮

Γ

fn(z) dz →
∮
Γ

f(z) dz

then f is holomorphic.

6 Lecture 6 (10.10) - Preparation for Residue Theory: Isolated
Singularity

Theorem 6.1 (Laurent series expansion). Let 0 ≤ R1 < R2 < +∞. Let f be a holomorphic function
on an open annulus {R1 < |z − a| < R2} = A. Then

Formula 6.1.

f(z) =

+∞∑
n=−∞

cn(z − a)n

holds on A where

Formula 6.2.
cn =

1

2πi

∮
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ

where n ∈ Z and R1 < r < R2.
Moreover, the convergence is absolute and uniform on r1 < |z − a| < r2 for any R1 < r1 < r2 < R2; cn
is independent of the choice of r.
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Proof. Take any z with R1 < |z − a| < R2. Choose R1 < r1 < r2 < R2 with r1 < |z − a| < r2. By
Cauchy’s theorem

f(z) =
1

2πi

∮
|ζ−a|=r2

f(ζ)

ζ − z
dζ − 1

2πi

∮
|ζ−a|=r1

f(ζ)

ζ − z
dζ

for the first integral of RHS we have

1

ζ − z
=

+∞∑
n=0

(z − a)n

(ζ − a)n+1
for |z − a| < r2 = |ζ − a|

and the second
1

ζ − z
=

+∞∑
n=0

(ζ − a)n

(z − a)n+1
for |ζ − a| < r2 = |z − a|

Therefore,

f(z) =

+∞∑
n=0

(z − a)n

(
1

2πi

∮
|ζ−a|=r2

f(ζ)

(ζ − a)n+1
dζ
)

+

+∞∑
n=0

1

(z − a)n+1

(
1

2πi

∮
|ζ−a|=r1

(ζ − a)nf(ζ) dζ
)

=

+∞∑
n=0

(z − a)n

(
1

2πi

∮
|ζ−a|=r2

f(ζ)

(ζ − a)n+1
dζ
)

+

−1∑
m=−∞

(z − a)m

(
1

2πi

∮
|ζ−a|=r1

f(ζ)

(ζ − a)m+1
dζ
)

Notice that
cn =

1

2πi

∮
|ζ−a|=ri

f(ζ)

(ζ − a)n+1
dζ =

1

2πi

∮
|ζ−a|=r

f(ζ)

(ζ − a)n+1
dζ

by Cauchy theorem.

Corollary 6.2 (Uniqueness of Coefficients of Laurent series). Suppose

f(z) =

+∞∑
n=−∞

cn(z − a)n

is convergent absolutely and uniformly on r1 < |z − a| < r2 for any R1 < r1 < r2 < R2, then, for
R1 < r < R2 and k ∈ Z,

ck =
1

2πi

∮
|z−a|=r

f(z)

(z − a)k+1
dz
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Proof. Fix r and take R1 < r1 < r < r2 < R2. Then,

1

2πi

∮
|ζ−a|=r

f(ζ)

(ζ − a)k+1
dζ

=

+∞∑
n=−∞

cn
1

2πi

∮
|ζ−a|=r

(ζ − a)n−k−1 dz

=

+∞∑
n=−∞

cn
1

2πi

∫ 2π

0

(a+ reiθ − a)n−k−1 d(a+ reiθ)

=

+∞∑
n=−∞

cn
rn−ki

2πi

∫ 2π

0

ei(n−k)θ dθ

= ck

Definition 6.1. An isolated singularity of a holomorphic function f(z) at z = a means that f(z) is
holomorphic on some deleted open disk neighborhood {0 < |z − a| < R} of a ∈ C.

Definition 6.2. Let a be an isolated singularity of f(z). Bu the Laurent series expansion, we have

f(z) =

+∞∑
n=−∞

cn(z − a)n

the part

f(z) =

−1∑
n=−∞

cn(z − a)n

is called the principal part of the Laurent series of f .

Recall Cauchy’s case: f = F/F where F,F are holomorphic functions.

Lemma 6.3. Suppose F is holomorphic on {|z − a| < R} and F ̸≡ 0. Then there exists m ≥ 0 and g
holomorphic on D s.t. F (z) = (z − a)mg(z) and g(z) ̸= 0 in an open subset {|z − a| < r}.
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Proof. By series expansion

F (z) =

+∞∑
n=0

cn(z − a)n

Let
m = min{n : cn ̸= 0}

Then

F (z) = (z − a)n
+∞∑
n=m

cn(z − a)n−m = (z − a)n

(
cn +

+∞∑
n=m+1

cn(z − a)n−m−1(z − a)

)

Let

g(z) = cn +

(
+∞∑

n=m+1

cn(z − a)n−m−1

)
(z − a)

and it’s clear that g is convergent in {|z − a| < R}. Taking r > 0 small enough, we can derive that(
+∞∑

n=m+1

|cn||z − a|n−m−1

)
|z − a| <

∣∣∣cn
2

∣∣∣
for all |z − a| < r.

f =
F
F

=
F

(z − a)mg
=

F̃
(z − a)m

=

+∞∑
n=−m

cn(z − a)n

Definition 6.3. For isolated singularity of f ,
When the principal part of f is:

• 0, removable singularity.

• finite number of nonzero terms, pole. The order of the pole is largest positive integer k s.t.
c−k ̸= 0.

• infinite number of nonzero terms, essential singularity.

Proposition 6.4. If f(z) is bounded and holomorphic on some deleted neighborhood of a, f can be
extended to a holomorphic function on a neighborhood of a

Proof. It suffices to prove that c−1 = c−2 · · · = 0.

|c−n| =

∣∣∣∣∣ 1

2πi

∫
|z−a|=r

f(z)(z − a)n−1 dz
∣∣∣∣∣ ≤ 1

2π
sup

|z−c|=r

|f |rn−12πr = Mrn → 0

Proposition 6.5. Let a ∈ C be an isolated singularity of f(z), which is holomorphic on {0 < |z − a| < R}
for some R > 0. Then a is a pole of f ⇐⇒

lim
z→a

|f(z)| = ∞
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Moreover, if a is a pole, the pole order k is the positive integer s.t.

lim
z→a

∣∣(z − a)kf(z)
∣∣

is a positive number.

Proof. Suppose cn = 0 for n < −k and c−k = 0 for some k > 0. Since f(z) = g(z)/(z − a)k where
g(z) :=

∑+∞
n=0 cn−k(z − a)n with g(a) = c−k ̸= 0, it follows that

lim
z→a

|f(z)| = lim
z→a

|g(z)|
|z − a|k

= ∞

lim
z→a

∣∣(z − a)kf(z)
∣∣ = |g(a)| = |c−k| > 0

Now suppose that limz→a |f(z)| = ∞. Then there exists 0 < R0 < R s.t. |f(z)| ≥ 1 for all
0 < |z − a| < R0. Define h = 1/f then h(z) ≤ 1, and hence a is a removable singularity and
can be expressed as a convergent power series h(z) =

∑+∞
n=0 dn(z − a)n, since limz→a |f(z)| = ∞,

limz→a h(z) = 0, then h(z) = (z − a)kg(z) where g ̸= 0, then 1/g =
∑+∞

n=0 en(z − a)n, then

f(z) =
1

h(z)
=

1

(z − a)kg(z)
=

+∞∑
n=−k

en+k(z − a)n on {|z − a| < R1}

with e0 ̸= 0.

Theorem 6.6 (Casorati-Weierstrass). Let a ∈ C be an isolated singularity of f where f is holomorphic
on {0 < |z − a| < R}. Then a is a essential singularity ⇐⇒ for all 0 < r < R, f({0 < |z − a| < r}) is
dense in C.

⇐. If z = a is a removable singularity, ∃0 < r < R st |f(z)| ≤ M for 0 < |z − a| < r, therefore its
image under f is not dense. If |z − a| is a pole, then similarly |f(z)| > 1.

⇒. ] assume that ∃0 < r < R st the image is not dense. Suppose {|z − b| < ρ} ∩ f({0 < |z − a| <
r}) = ∅ with ρ ≥ 0. Define

g(z) =
1

f(z)− b

on {0 < |z − a| < r}, then |g(z)| ≤ 1/ρ on Br. Since g ̸≡ 0 and z = a is a removable singularity of
g,

g(z) = (z − a)kh(z)

with some k ≥ 0 and h ̸= 0, then

f(z) = b+
1

(z − a)k
1

h(z)

which makes z = a a pole, s contradiction.

7 Lecture 7 (10.15) - Residue Theorem

Definition 7.1 (residue). For an isolated singularity z = a of f , which is defined on {0 < |z − a| < R},

13



we define the residue of f at z = a denoted by Resa f , as:

Resa f =
1

2πi

∮
|z−a|=r

f(z) dz

for any 0 < r < R.

Remark. By Laurent series, we can show that

Resa f = c−1

Remark. If f has a simple pole at a, then

Resa f = lim
z→a

(z − a)f(z)

if the pole is of degree order k ≥ 2, then

Resa f ̸= lim
z→a

(z − a)kf(z)

Instead,

Resa f =
1

(k − 1)!
lim
z→a

dk−1

dzk−1

(
(z − a)kf(z)

)

Theorem 7.1 (residue theorem). Suppose Ω is a bounded open subset of C with piecewise smooth
boundary ∂Ω and U is an open neighborhood of Ω. Suppose a1, · · · , ap are distinct points in Ω and f is
a holomorphic function on U \ {a1, · · · , ap}. Then,

Formula 7.1. ∮
∂Ω

f(z) dz = 2πi

p∑
j=1

Resaj f

Proof. Denote discs around each aj by Dj where Dj ⊂ Ω. Consider Ω \ (
⋃
Dj) = Ω̃. Then f is

holomorphic on an open neighborhood of Ω̃. Then by Cauchy-Goursat theorem,∮
∂Ω

f(z) dz −
p∑

j=1

∮
∂Dj

f(z) dz = 0

then ∮
∂Ω

f(z) dz = 2πi

p∑
j=1

Resaj
f

Remark. Definition is how you legalize your bias

Definition 7.2 (meromorphic function). Suppose U is an open set of C and E is a discrete subset of
U . A holomorphic function f defined on U \ E is called meromorphic function on U if each a ∈ E is
a pole of f .
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Remark. f has a pole at z = a ⇐⇒ near z = a, f = F/F where F , F are holomorphic near a.

Remark. For higher dimensions, f(z1, · · · , zn) is meromorphic if locally f = F/F , where F , F are
holomorphic near (a1, · · · , an).

Remark. inverse question: if

U =

∞⋃
i=0

Di

and on Di, gi/hi is assigned and on Di ∩Dj , gi/hi − gj/hj is holomorphic, can we find a meromorphic
function F on U st F − gi/hi is holomorphic? (cousin problem: sheaf theory)

Remark. etymology:
holo-: ὅλος: whole, complete
morph-: μορφή: shape, form
mero-: μέρος: part

Remark. why residue?
one reason: weird countor into circles.

Recall: ∫ +∞

−∞
e−πx2

dx = 1

Proposition 7.2. .

Formula 7.2. ∫ +∞

−∞
e−πx2

e−2πixξ dx = e−πξ2 , ξ ∈ R

15



Proof. Rewrite the formula as

I =

∫ +∞

−∞
e−πx2

e−2πixξeπξ
2

dx

=

∫ +∞

−∞
e−π(x+iξ)2 dx

=

∫
R+iξ

e−πz2

dz

consider f(z) = e−πz2 and contour Γ : Γ1 + γ1 − Γ2 − γ2.

x

y

Γ1

Γ2

γ1γ2

iξ

−R R

By residue theorem, ∮
Γ

f(z) dz = 0

then ∫
Γ1

f(z) dz −
∫
Γ2

f(z) dz =

∫
γ2

f(z) dz −
∫
γ1

f(z) dz

where
LHS =

∫ R

−R

e−πx2

dx−
∫ R

−R

e−π(x+iξ)2 dx

and for RHS, ∣∣∣∣∣
∫
γj

f(z) dz
∣∣∣∣∣ ≤ e−π(R2+ξ2)ξ → 0

then ∫ +∞

−∞
e−π2(x+iξ)2 dx−

∫ +∞

−∞
e−π2(x+iξ)2 dx

= lim
R→∞

(∫ R

−R

e−π2(x+iξ)2 dx−
∫ R

−R

e−π2x2

dx
)

= lim
R→∞

(∫
γ2

f(z) dz −
∫
γ1

f(z) dz
)

= 0

Integral of rational functions of sine/cosine functions over [0, 2π]

I :=

∫ 2π

0

R(cos θ, sin θ) dθ

method: 1. use substitution

z = eiθ ⇒ cos θ =
z + 1/z

2
, sin θ =

z − 1/z

2i
, dθ =

dz
iz

then
I =

∮
|z|=1

f(z) dz
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2. Apply residue theorem

Example 7.1.
a ∈ (0, 1)

I =

∫ 2π

0

dθ
1− 2a cos θ + a2

=

∮
|z|=1

dz
iz

1

1− 2a(z + 1/z)/2 + a2

= i

∮
|z|=1

dz 1

az2 − (a2 + 1)z + a

= i

∮
|z|=1

dz 1

(az − 1)(z − a)

=
2π

1− a2

similarly, if a > 1, we have
I =

2π

a2 − 1

Integral of rational functions over the real line∫ +∞

−∞

P (x)

Q(x)
dx

where: degQ ≥ degP + 2;Q(x) ̸= 0, ∀x ∈ R

Theorem 7.3. For degQ ≥ degP + 2;Q(x) ̸= 0, ∀x ∈ R, we have:

Formula 7.3. ∫ +∞

−∞

P (x)

Q(x)
dx = 2πi

∑
Im a≥0

Resa
P (z)

Q(z)
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Proof. Let ΓR be the contour of [−R,R] + {Reiθ}πθ=0 = [−R,R] + CR with the usual orientation.
Write

Q(z) = azm
(
1 +

a1
z

+ · · ·+ am
zm

)
P (z) = bzn

(
1 +

b1
z

+ · · ·+ bn
zn

)
with aj , bj ̸= 0 and m ≥ n+ 2. Then∫

CR

P (z)

Q(z)
dz

=

∫ π

θ=0

bRneinθ

aRmeimθ

1 + o(1)
1 + o(1)Rieiθ dθ

=
1

Rm−n−1

b

a

∫ π

θ=0

ei(n−m+1)θ 1 + o(1)
1 + o(1) dθ

= O
(

1

Rm−n−1

)
→ 0

(the o(1) here is uniform and therefore the last integral is bounded by taking the smallest possible
denominator and biggest possible numerator.)
Then

lim
R→+∞

∫
CR

P (z)

Q(z)
dz = 0

then ∫ +∞

−∞

P (x)

Q(x)
dx

=

∫
ΓR

P (z)

Q(z)
dz −

∫
CR

P (z)

Q(z)
dz

→ 2πi
∑

Im a≥0

Resa
P (z)

Q(z)
+ 0

Example 7.2. ∫ +∞

−∞

dx
(x2 + 1)3

= 2πiResi
1

(z2 + 1)3
= 2πi

1

2!

d2
dz2

(z − i)3

(z2 + 1)3

∣∣∣∣
z=i

=
3

8
π

8 Lecture 8 (10.22) - Integral of Sine / Cosine Times Rational Func-
tion ∫ +∞

−∞

P (x)

Q(x)
cosx dx ,

∫ +∞

−∞

P (x)

Q(x)
sinx dx

where degQ ≥ degP + 1 and Q(x) ̸= 0 except simple ones at zeros of sin or cos respectively.

Remark. I exists.
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Proof. for the zeros of Q, the numerator is also zero, then they cancel
for infinity, by integration by parts∫

P

Q
trig dx =

P

Q
trig±

∫ (
P

Q

)′

trig dx

and then we have convergence of degree ≥ 2

we consider the function
f(z) =

P (z)

Q(z)
eiz

then Re f(z) = P (x)/Q(x) cosx, Im f(z) = P (x)/Q(x) sinx.
now the new difficulty is: for zeros of Q(z), f is ∞! therefore we consider the contour that bypass the poles:

take small enough ε and big enough R st each zero of Q ai on the real line is surrounded by a ε-semicircle,
and a R-semicircle covers all the zeroes of Q on C:

x

y

⊗

⊗

⊗

⊗

⊗

⊗

⊗
ε

⊗
ε

⊗
ε

⊗
ε

⊗
ε R

Lemma 8.1 (half residue). Let z0 be a simple pole of a meromorphic function f . Let

Cε,α,β(z0) = {z0 + εeiθ : α ≤ θ ≤ β}

then
lim
ε→0

∫
Cε,α,β(z0)

f(z) dz = (β − α)iResz0 f(z)

in particular, when α = 0,β = π,

lim
ε→0

1

2πi

∫
Cε,α,β(z0)

f(z) dz =
1

2
Resz0 f(z)
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Proof.

f(z) =
c−1

z − z0
+

∞∑
n=0

cn(z − z0)
n

lim
ε→0

∫
Cε,α,β(z0)

f(z) dz

= lim
ε→0

∫ β

θ=α

(
c−1

εeiθ
+

∞∑
n=0

cnε
neinθ

)
iεeiθ dθ

= lim
ε→0

i

∫ β

θ=α

(
c−1 +

∞∑
n=0

cnε
n+1ei(n+1)θ

)
dθ

= i(β − α)c−1 + lim
ε→0

i

∞∑
n=0

cnε
n+1

∫ β

θ=α

ei(n+1)θ dθ

= i(β − α)c−1

Lemma 8.2. With the above setting,

lim
R→+∞

∫
CR

P (z)

Q(z)
eiz dz = 0

where CR = {Reiθ}πθ=0.

Proof. Notice that
∣∣eiz∣∣ ≤ 1 when Im z ≥ 0. If degQ ≥ degP + 2, then trivial.∫
CR

P (z)

Q(z)
eiz dz =

(
P (z)

Q(z)

eiz

i

)z=R

z=−R

−
∫
CR

(
P (z)

Q(z)

)′
eiz

i
dz → 0

Now we’re ready for the formula:

Theorem 8.3. For the above setting, we have:

Formula 8.1. ∫ +∞

−∞

P (z)

Q(z)
eiz dz = πi

∑
Resai

P (z)

Q(z)
eiz + 2πi

∑
Im α<0

Resα
P (z)

Q(z)
eiz

Proof. Take the above contour, Now by residue theorem, (me: I did some non rigorous notation)

IR,ε − πi
∑

Q(ai)=0

∫
Cai,ϵ

f(z) dz +
∫
CR

f(z) dz = 2πi
∑

Im α>0
|α|<R

Resα f

here IR,ε is the bottom line with gaps of the contour.
Then we take the limit using the lemmas, and we get the formula.
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Also, for −i,

Formula 8.2.∫ +∞

−∞

P (z)

Q(z)
e−iz dz = πi

∑
Resai

P (z)

Q(z)
e−iz + 2πi

∑
Im α<0

Resα
P (z)

Q(z)
e−iz

Then we take the real and imaginary part.

Example 8.1. ∫ +∞

−∞

cosx dx
x2 + 1

= Re
(
2πiResi

eiz

z2 + 1

)
=

π

e

Example 8.2. ∫ +∞

−∞

sinx
x

dx = Im
(
πiRes0

eiz

z

)
= π

Example 8.3. ∫ +∞

0

1− cosx
x2

dx =
π

2

Proof. Notice ∫ +∞

0

1− cosx
x2

dx =
1

2

∫ +∞

−∞

1− cosx
x2

dx

define
f(z) =

1− eiz

z2

and the contour is
[−R,−ε]− Cε + [ε,R] + CR

where Cε and CR are upper semicircles around 0, like how it was defined above. Then take the
integral on them and use residue theorem:

Iε,R − Iε + IR = 0

then ∣∣∣∣∫
CR

f(z) dz
∣∣∣∣ ≤ 2π

R
→ 0

Iε =

∫ π

0

1− eiεe
iθ

εeiθ
idθ

=

∫ π

0

1− (1 + iεeiθ +O(ε2))

εeiθ
idθ

=

∫ π

0

(1 +O(ε)) dθ

→ π

(me: in the original note we made it into sin, cos. I don’t think we need to do all this. Uniform is
trivial anyway.)
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9 Lecture 9 (10.24) - The Use of Branches of Holomorphic Func-
tions

Example 9.1. .

Formula 9.1. ∫ ∞

0

logx
x2 + 1

dx = 0

Remark. Trivially the limit exists.

Method 1. consider
f(z) =

log z
z2 + 1

where log z = log |z|+ i arg z, arg z ∈ (−π/2, 3π/2), and take the indented upper half disk Cϵ,R:

x

y

⊗

ε R

Then by residue theorem, we have∫ +R

+ε

logx
x2 + 1

dx+
∫ π

θ=0

logR+ iθ

R2e2iθ + 1
d(Reiθ)+

∫ −ε

−R

log |x|+ πi

x2 + 1
dx−

∫ π

θ=0

log ε+ iθ

ε2e2iθ + 1
d(εeiθ) = 1

2πi
Resi

log z
z2 + 1

Then take the limit, and∫ +R

+ε

logx
x2 + 1

dx →
∫ +∞

0

logx
x2 + 1

dx∫ π

θ=0

logR+ iθ

R2e2iθ + 1
d(Reiθ) = O

(
logR
R

)
+O

(
1

R

)
→ 0∫ −ε

−R

log |x|+ πi

x2 + 1
dx →

∫ +∞

0

logx
x2 + 1

dx+

(∫ +∞

0

logx
x2 + 1

dx
)
πi =

∫ +∞

0

logx
x2 + 1

dx+
π2

2
i

−
∫ π

θ=0

log ε+ iθ

ε2e2iθ + 1
d(εeiθ) = O (ε log ε) +O (ε) → 0

1

2πi
Resi

log z
z2 + 1

=
π2

2
i

then we have ∫ ∞

0

logx
x2 + 1

dx = 0
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Method 2. we can also define this function

f(z) =
(log z)2
z2 + 1

where arg z ∈ (0, 2π) and this contour

x

y

⊗

⊗

ε

R

Example 9.2. .

Formula 9.2. ∫ 1

0

1

xα(1− x)1−α
=

π

sinπα

where α ∈ (0, 1)

we take the function
f(z) =

1

zα(1− z)1−α

where it’s actually defined as
f(z) = e−α log ze−(1−α) log(1−z)

where the arg of the first log takes (0, 2π) and the second takes (−π, π).
This thing is defined only on C \ [0,+∞), but if we naively draw a contour for this like above, the control

for the right is hard.

Lemma 9.1. f(z) has a continuous extension on C \ [0, 1].

Proof.

Now by Morera’s theorem, the extended f (we’ll just call it f) is holomorphic on C \ [0, 1]. Then take this
contour:
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x

y

4

3
ε2

1

R

By Cauchy-Goursat theorem, ∮
ΓR

f(z) dz =

∮
Γε

f(z) dz

then ∮
Γε

f(z) dz = J1 − J2 + J3 + J4

=

∫ 1

0

d(x− iε)

(x− iε)α(1− (x− iε)))1−α

−
∫ 1

0

d(x+ iε)

(x+ iε)α(1− (x+ iε)))1−α

+

∫ π/2

−π/2

d(1 + εeiθ))

(1 + εeiθ)α(1− (1 + εeiθ)))1−α

+

∫ 3π/2

π/2

d(εeiθ))
(εeiθ)α(1− (εeiθ)))1−α

Take the limit for each. Here,

|J3| ≤
∫ π/2

−π/2

ε dθ
(1/2)αε1−α

= O((2ε)α) → 0

similarly J4 → 0.
(...)

10 Lecture 10 (11.5) - Computation of Infinite Sums By Residues

11 Lecture 11 (11.7) - Special Functions

Definition 11.1 (gamma function (prototype)). .

Formula 11.1.
Γ(x) =

∫ ∞

0

tx−1e−t dt

this formula is currently only when x > 0. Convergence is trivial.

Theorem 11.1 (recursion formula). for x > 1, we have
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Formula 11.2.
Γ(x) = (x− 1)Γ(x− 1)

Proof.
Γ(x) = −tx−1e−t

∣∣∞
0

+ (x− 1)

∫ ∞

0

tx−2e−t dt = (x− 1)Γ(x− 1)

also for integers special value,

Formula 11.3.
Γ(1) = 1,Γ(n) = (n− 1)!

Lemma 11.2. the gamma function like this

Formula 11.4.
Γ(z) =

∫ ∞

0

tz−1e−t dt

is well-defined for z ∈ C where Re z > 0, and is holomorphic.

defined. notice that
tz−1 = e(log t)(z−1) = e(log t)(Re z+i Im z−1)

then ∣∣tz−1
∣∣ = ∣∣tRe z−1

∣∣
then ∣∣∣∣∣

∫ R

ε

tz−1e−t dt
∣∣∣∣∣ ≤

∫ R

ε

∣∣tz−1
∣∣e−t dt =

∫ R

ε

∣∣tRe z−1
∣∣e−t dt

and we can prove it like the x > 0 version.

holomorphic. we claim that

∂

∂x

(∫ ∞

0

tz−1e−t dt
)

=

∫ ∞

0

log t · tz−1e−t dt

∂

∂y

(∫ ∞

0

tz−1e−t dt
)

=

∫ ∞

0

i log t · tz−1e−t dt

it suffices to show that ∫ ∞

0

|log t|
∣∣tz−1

∣∣e−t dt

exists and is continuous on {Re z > 0}. Which is trivial. (me: I forgot the original theorem but
the paper note just gave the proof for existence which is trivial.)
By a similar argument, we can show that the second derivatives exist and are continuous, then by
C-R equation holomorphic.

Definition 11.2 (beta function). .
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Formula 11.5.
B(x, y) =

∫ 1

0

ty−1(1− t)x−1 dt

Lemma 11.3. .

Formula 11.6.
B(x, y) = Γ(x)Γ(y)

Γ(x+ y)

guess. Laplace transform:
L(f)(s) =

∫ ∞

0

f(t)e−st dt

Convolution:
(f ∗ g)(x) =

∫
Ω

f(t)g(x− t) dt

then
B(x, y)(s) =

∫ s

0

ty−1(s− t)x−1 dt = ty−1 ∗ tx−1

by the properties of Laplacian transformation

L(f ∗ g) = L(f)L(g)

then

L(B(x, y)) = L(ty−1)L(tx−1) =

∫ ∞

0

ty−1e−st dt
∫ ∞

0

tx−1e−st dt = Γ(y)

sy
Γ(x)

sx
=

Γ(x)Γ(y)

Γ(x+ y)
L(tx+y−1)

then do the inverse Laplacian transform

B(x, y)(t) = Γ(x)Γ(y)

Γ(x+ y)
tx+y−1

and set t = 1

B(x, y) = Γ(x)Γ(y)

Γ(x+ y)
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Proof.

Γ(x)Γ(y) =

∫ ∞

t=0

tx−1e−t dt
∫ ∞

u=∞
uy−1e−u du

=

∫∫
tx−1e−tuy−1e−u dtdu

u=tv
=

∫∫
tx−1e−t(tv)y−1e−tv dtdtv

=

∫∫
tx−1e−tty−1vy−1e−tvtdtdv

=

∫∫
tx+y−1e−t(1+v)vy−1 dtdv

w=t(1+v)
=

∫∫ (
w

1 + v

)x+y−1

e−wvy−1 d
(

w

1 + v

)
dv

=

∫∫
wx+y−1e−w vy−1

(1 + v)x+y
dw dv

=

∫ ∞

0

wx+y−1e−w dw
∫ ∞

0

vy−1

(1 + v)x+y
dv

= Γ(x+ y)B(x, y)

as a special case,

Formula 11.7.
Γ(x)Γ(1− x) =

π

sinπx

then we can use this formula to reflect Γ(z) over x = 1/2, and extend Γ(z) to a meromorphic function on
C.

Definition 11.3 (gamma function (full version)).

Γ(z) =


f1 =

∫ ∞

0

tz−1e−t dt Re z > 0

f2 =
π

sinπz

(∫ ∞

0

t−ze−t dt
)−1

Re z < 1

Lemma 11.4. This definition is well defined, and the result is a meromorphic function on C with simple
poles at 0,−1,−2, · · ·

27



Proof. Notice f1 = f2 on (0, 1) and are both meromorphic, then by uniqueness of meromorphic
functions, f1 = f2 on all of {0 < Re z < 1}.
Consider

Γ(z) =
Γ(z + 1)

z

and Γ(z) is holomorphic on {Re z > 0}, then Γ(z) has at most simple poles on 0,−1,−2, · · · .
Since

Γ(z)Γ(1− z) =
π

sinπz
and when Re z ≤ 0, Γ(1 − z) is holomorphic and π/ sinπz have simple poles on Z, we have that
Γ(z) have simple poles on 0,−1,−2, · · · .

Corollary 11.5.
1

Γ(z)

is holomorphic on C

Example 11.1. .

Formula 11.8.
Γ(1/2) =

√
π

Proof.
B
(
1

2
,
1

2

)
=

π

sinπ/2 =
Γ(1/2)Γ(1/2)

Γ(1)

Example 11.2. .

Formula 11.9.
Γ(2x) =

22x−1

√
π

Γ

(
x+

1

2

)
Γ(x)

Proof.

B(x, x) =
∫ 1

0

λx−1(1−λ)x−1 dλ = 2

∫ 1/2

0

λx−1(1−λ)x−1 dλ = 21−2x

∫ 1

0

(1−µ)x−1µ−1/2 dµ = 21−2xB
(
x,

1

2

)
Γ(x)Γ(x)

Γ(2x)
= 21−2xΓ(x)Γ(1/2)

Γ(x+ 1/2)

Γ(2x) =
22x−1

√
π

Γ

(
x+

1

2

)
Γ(x)
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12 Lecture 12 (11.12) - Infinite Products

Definition 12.1. (see Analysis II)

Theorem 12.1. If
∞∏

n=1

(1 + zn)

converges, then zn → 0.

Proof. We can assume that zn ̸= −1 for all n. Let

Pk =

k∏
n=1

(1 + zn).

Then Pk → P , where P ̸= 0, as k → +∞. Thus,

Pk

Pk−1
→ 1

as k → +∞.

Suppose that |zn| < 1 for all n = 1, 2, . . . (so that zn ̸= −1). Then
∞∏

n=1

(1 + zn)

converges iff
∞∑

n=1

log(1 + zn)

converges. Here, log is the principal branch, where −π < argw < π.

Proof. (me: This is my own proof which has nothing to do with the lecture note. The original one
is pretty complicated but I think this is enough.) Define

Sk =

k∑
n=1

log(1 + zn)

Pk = eSk , then Sk convergence trivially imply Pk convergence.
the problem is that Sk = logPk only holds modulo 2πi, and might not hold.
what hold is

log |Pk| =
k∑

n=1

log |1 + zn| = ReSk

argPk + 2mπ =

k∑
n=1

arg(1 + zn) = ImSk (m ∈ Z)

the convergence of Pk trivially implies the convergence of ReSk. For argSk, consider argPk ∈
(argP − ε, argP + ε) since some k, then

ImSk ∈ (argP − ε, argP + ε) + 2mkπ

since −π < arg(1 + zn) < π, when ε < π/2, mk cannot change. Then ImSk converges to some
argP + 2mπ.

29



∞∏
n=1

(1 + |zn|)

converges iff
∞∑

n=1

|zn|

converges.

Proof. See Analysis II

If
∞∏

n=1

(1 + |zn|)

converges, then
∞∏

n=1

(1 + zn)

converges.

Proof.
∞∏

n=1

(1 + |zn|) ⇒
∞∑

n=1

|zn| ⇒
∞∑

n=1

|log(1 + zn)| ⇒
∞∑

n=1

log(1 + zn) ⇒
∞∏

n=1

(1 + zn)

Definition 12.2. Let Fn be a sequence of functions defined on B ⊆ C. The infinite product
∞∏

n=1

Fn(z)

is said to converge uniformly on B iff for some m:

1. Fn(z) ̸= 0 for all n ≥ m and all z ∈ B.

2. The sequence

Pk(z) :=

k∏
n=m

Fn(z)

converges uniformly on B to some function P (z).

3. P (z) ̸= 0 for all z ∈ B.

Lemma 12.2 (Cauchy’s inequality). Suppose f(z) is holomorphic on {|z − a| < R}. Then∣∣∣f (n)(a)
∣∣∣ ≤ n!

rn
sup

|z−a|=r

|f(z)|

where 0 < r < R.
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Proof.
f (n)(a) =

n!

2πi

∫
|z−a|=r

f(z)

(z − a)n+1
dz

Thus, ∣∣∣f (n)(a)
∣∣∣ ≤ n!

2π

∫
|z−a|=r

|f(z)|
rn+1

|dz|

Using the property of integrals and bounds:∣∣∣f (n)(a)
∣∣∣ ≤ n!

2π
· 2πr ·

sup|z−a|=r |f(z)|
rn+1

=
n!

rn
sup

|z−a|=r

|f(z)|.

Remark. When n = 0,
sup

|z−a|<r

|f(z)| = sup
|z−a|=r

|f(z)|.

If |f(w)| = sup|z−a|=r |f(z)| for |w − a| < r, then f(z) = constant.

Lemma 12.3. Suppose that Fn(z) are holomorphic functions on an open set Ω and that
∑

Fn(z)
converges uniformly to F (z) on every closed disk in Ω. Then F (z) is holomorphic on Ω. Moreover, if
Fn(z) ̸= 0 for any n and z ∈ Ω, then

F ′

F
=

∞∑
n=1

F ′
n

Fn
.

Proof. The holomorphicity follows by Morera’s theorem.
Next, we prove that F ′

n converges to F ′ uniformly on any closed disk in Ω. Fix a disk D = {z :
|z − a| ≤ r} in Ω and take Dδ = {z : |z − a| ≤ r + δ} in Ω for a certain δ > 0. Applying Cauchy’s
inequality, we can get

sup
z∈D

|F ′
n − F ′| ≤ 1

δ
sup
z∈Dδ

|Fn − F (z)|.

Then F ′
n → F ′ uniformly on D.

By definition, F (z) ̸= 0 for all z ∈ Ω. Define Gm(z) :=
∏m

n=1 Fn(z). Then Gm(z) → F uniformly
on D as m → ∞. Computation yields that

G′
m(z)

Gm(z)
=

m∑
n=1

F ′
n(z)

Fn(z)
.

Thus,
G′

m(z)

Gm(z)
→

∞∑
n=1

F ′
n(z)

Fn(z)
→ F ′(z)

F (z)
on D as m → ∞.

Remark.
∏

Fn ⇒ F on D if |Fn| < 1 since m, and if either
∑

logFn or
∑

|Fn − 1| converges
uniformly on D.
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Theorem 12.4 (Weierstrass, Hadamard, (a simple case where degree is 1)). Let an be a given sequence
(possibly finite) of nonzero complex numbers such that

∞∑
n=1

1

|an|2
< ∞ (∆)

for some k > 0. Then, if g(z) is any entire function, the function

Formula 12.1.
f(z) = eg(z)zk

∞∏
n=1

(
1− z

an

)
ez/an

is entire. In fact:

1. The product converges uniformly on closed disks.

2. f has zeros at a1, a2, · · · and has a zero of order k at z = 0, but has no other zeros.

Conversely, if f is an entire function with properties (2) and (∆), then f can be written in the form
above.

Proof. We first show that
∞∏

n=1

(
1− z

an

)
ez/an

is entire. Since (∆) holds, only finitely many an lie in AR = {|z| ≤ R} for any fixed R.
∞∑

n=1

∣∣∣∣(1− z

an

)
ez/an − 1

∣∣∣∣ = ∑
|an|≤R

∣∣∣∣(1− z

an

)
ez/an − 1

∣∣∣∣+ ∑
|an|>R

∣∣∣∣(1− z

an

)
ez/an − 1

∣∣∣∣
For any |z| ≤ R

2 , this can be bounded as

≤ C1 +

∞∑
n=1

C2
z2

|an|2
< ∞

Therefore, the product converges uniformly on AR/2, then it converges on C to an entire function.
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Proof. With property 2 and ∆ we can construct

zk
∞∏

n=1

(
1− z

an

)
ez/an

that satisfy exactly property 2. After division against f , what we have left is a entire function
without zeros.
(me: the proof is incomplete so I think I should add the step above. This step is (kind of) in the
lecture but not the note.)
Claim: Let h(z) be entire with no zeros. Then there exists an entire function g(z) such that h = eg.
Indeed, Set G = h′

h . Integrate G to yield g. More precisely, write

G = a0 + a1z + a2z
2 + · · ·

and let g = a0z +
a1z

2

2 + a2z
3

3 + · · ·. Let f = eg, then,

f ′ = f · g′ = f · h
′

h

then (
f

h

)′

=
f ′h− fh′

h2
≡ 0

Thus, h = Ceg.

Example 12.1. We have rigorously

Formula 12.2.
sin z = z

∞∏
n=1

(
1− z2

n2π2

)
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Proof. The zeros of sin z occur at z = 0 and z = ±nπ for n = 1, 2, · · · . since
∞∑

n=1

(
1

nπ

)2

< ∞.

converges, Using the Weierstrass factorization theorem, we can represent sin z as follows:

sin z = eg(z)z

∞∏
n=1

(
1− z

nπ

)
ez/nπ

∞∏
n=1

(
1 +

z

nπ

)
e−z/nπ

= eg(z)z

∞∏
n=1

(
1− z2

n2π2

)
where g(z) is an entire function.
Now solve for g(z). we have,

(log sin z)′ = g′(z) +
1

z
+

∞∑
n=1

2z

z2 − n2π2

and also
(log sin z)′ = cot z =

1

z
+

∞∑
n=1

2z

z2 − n2π2

then g′ ≡ 0, then we get the desired result.

Example 12.2. .

Formula 12.3.
1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n
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Proof. Claim: Let

Fn(z) =

∫ n

0

(
1− t

n

)n

tz−1 dt = nzn!

z(z + 1) · · · (z + n)

Proof: Let t = ns, so dt = n ds. Then:

Fn(z) = nz

∫ 1

0

(1− s)nsz−1 ds

= nz

(
sz

z
(1− s)n

∣∣∣∣1
s=0

+
n

z

∫ 1

0

(1− s)n−1sz ds
)

= nz n

z

∫ 1

0

(1− s)n−1sz ds

= · · ·

=
nzn(n− 1) · · · 1

z(z + 1) · · · (z + n)

Claim:
lim
n→∞

Fn(z) = Γ(z)

for Re z > 0.
Proof: Consider the integral: ∫ ∞

n

(
1− t

n

)n

tz−1 dt

0 ≤ e−t −
(
1− t

n

)n

≤ e−t

(
1−

(
1− t2

n2

)n)
≤ t2

n
e−t

Thus: ∣∣∣∣∫ ∞

n

(
1− t

n

)n

tz−1 dt
∣∣∣∣ ≤ ∫ ∞

n

e−t
∣∣tz−1

∣∣ dt → 0∣∣∣∣∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1 dt

∣∣∣∣ ≤ ∫ n

0

t2

n
e−t
∣∣tz−1

∣∣ dt ≤ 1

n

∫ n

0

e−t
∣∣tz+1

∣∣ dt → 0

Now, using the lemmas:

1

Γ(z)
=

1

limn→∞ Fn(z)

= z lim
n→∞

n−z
n∏

k=1

(
1 +

z

k

)
= z lim

n→∞
e(1+1/2+···+1/n−log n)z

n∏
k=1

(
1 +

z

k

)
e−z/k

= zeγz
∞∏
k=1

(
1 +

z

k

)
e−z/k

(here down, where are these?? )

Definition 12.3 (function of finite order). Let f be an entire function. If there exists a positive number
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ρ and constants A,B > 0 st
|f(z)| ≤ AeB|z|ρ

then we say that f has an order of growth ≤ ρ. We define the order of growth of f as

ρf = inf ρ

Theorem 12.5. Let f be an entire function that has an order of growth ≤ ρ, if z1, z2, · · · denote the
zeros of f with zk ̸= 0, then for all s > ρ we have∑ 1

|zk|s
< ∞

Corollary 12.6. If we know the growth of ζ(z)(z − 1) is of order ≤ 1− δ, 0 < δ < 1, we have that

ζ(s) =
1

s− 1
ea+bs

∞∏
n=1

(
1 +

s

2n

)
e−s/2n

∏
non-real zero p

(
1− s

ρ

)
es/ρ

(Jensen’s formula)
Riemann zeta function
we want to extend

Formula 12.4.
ζ(s) =

∞∑
n=1

1

nz

which is already well defined and holomorphic on {Re z > 1}
Note that ∫ ∞

0

tz−1

et − 1
dt =

∫ ∞

t=0

( ∞∑
n=1

tz−1e−nt

)
dt

=

∞∑
n=1

∫ ∞

t=0

tz−1e−nt dt

=

∞∑
n=1

1

nz

∫ ∞

t=0

tz−1e−t dt

= ζ(z)Γ(z)

then we can define

Definition 12.4 (Riemann zeta function). .

Formula 12.5.
ζ(z) =

1

Γ(z)

∫ ∞

t=0

tz−1

et − 1
dt

Now this is still not of any gain, since the integral touches the singularity. To find a better integral, we
move the integral line away

Lemma 12.7. Define
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Formula 12.6.
ζ̂(z) =

e−iπz

2i sin(πz)Γ(z)

∫
C

ωz−1

eω − 1
dω

where 0 < argω < 2π. The contour is

x

y

ε

(convergence and meromorphicity omitted. )

Remark. The upper line approaches what we want but the lower line doesn’t, because the log func-
tion has a 2πi phase difference. We just do the calculation and fix the result after the calculation.

then, ζ̂(z) coincides with ζ(s) on z = s > 1.

Proof. (...)

Q: What are the singularities?
A:

Proposition 12.8. ζ(z) has a simple pole at z = 1 and is holomorphic everywhere else. The residue
here is 1.

Proof. by the form of the function
ζ(z) = Γ(1− z) · · ·

the pole set is contained in 1, 2, · · · and it has simple poles only. Also, ζ(s) is holomorphic for
s > 1, then the only pole can be z = 1.

ζ(s) =
1

Γ(s)

∫ ∞

t=0

ts−1

et − 1
dt

=
1

Γ(s)

(∫ 1

t=0

ts−1

t

(
1− 1

2
t+ · · ·

)
dt+

∫ ∞

1

ts−1

et − 1
dt
)

=
1

Γ(s)

(
1

s− 1
+O(1)

)
=

1

s− 1
+O(1)

as s → 1.

Q: Zeros of ζ(z)
A:

Proposition 12.9. for Re z > 1,
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Formula 12.7.
ζ(z) =

∏
p

1

1− p−z

Proof.
∏

p
1

1−p−z converges if
∑

p

∣∣∣ 1
pz−1

∣∣∣ converges. Since
∑
p

∣∣∣∣ 1

pz − 1

∣∣∣∣ ≤ 2
∑
p

1

|pz|
≤ 2

∞∑
n=1

1

nRe z
< ∞

it converges and is holomorphic for Re z > 1. Then, it suffices to prove the equality on s ∈ (1,∞).
In fact we have Euler’s identity

∏
p

1

1− p−s
=
∏
p

(1 + p−s + p−2s + · · · ) =
∞∑

n=1

1

ns

Corollary 12.10. ζ(z) ̸= 0 for Re z > 1

2. functional equation of ζ(s)

Proposition 12.11. .

Formula 12.8.
ζ(1− z) = 21−zπ−z cos(πz/2)Γ(z)ζ(z)
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Proof. WLOG we can assume z < 0. Edit the contour before like this

x

y

ε

(2n+ 1)πi

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

(∫
−
∫ )

ωz−1

eω − 1
dω

= 2πi
∑
a

Resa
ωz−1

eω − 1

= 2πi
∑

n∈Z\0

Res2πin
ωz−1

eω − 1

= 2πi
∑

n∈Z\0

lim
ω→2πin

ωz−1(ω − 2πin)

eω − 1

= 2πi
∑

n∈Z\0

lim
ω→2πin

ωz−1(ω − 2πin)

eω − 1

= 2πi

+∞∑
n=1

(2πn)z−1
(
e(πi/2)(z−1) + e(3πi/2)(z−1)

)
=

(
+∞∑
n=1

nz−1

)
(2π)z

(
e(πi/2)z − e(3πi/2)z

)
also ∫

ωz−1

eω − 1
dω = (...) = O(nRe z) → 0

then

ζ(z) = − e−iπz

2i sin(πz)Γ(z)

(
+∞∑
n=1

nz−1

)
(2π)z

(
e(πi/2)z − e(3πi/2)z

)
=

sin(πz/2)
sin(πz)

1

Γ(z)
(2π)zζ(1− z)

= 2z−1πz 1

cos(πz/2)
1

Γ(z)
ζ(1− z)

(here down was not in the lecture but in the note. )

recall
Γ(z) = 2z−1Γ

(
z + 1

2

)
Γ
(z
2

)
π−1/2
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then
ζ(1− z)Γ

1− z

2
π−(1−z)/2 = ζ(z)Γ

z

2
π−z/2

Definition 12.5. .

Formula 12.9.
ξ(z) =

1

2
z(z − 1)Γ

(z
2

)
ζ(z)π−z/2

Lemma 12.12. .

Formula 12.10.
ξ(z) = ξ(1− z)

and ξ is entire.

Proof. Γ(z/2) has simple poles at z = 0,−2,−4, · · · .
Claim: ζ(z) has zeros at z = 0,−2,−4, · · · .
(...)

Proposition 12.13. The only zeros of ζ(z) outside the strip 0 ≤ Re z ≤ 1 are at −2,−4, · · ·

Proof. For Re z > 1 ζ(z) is zero free.
Consider Re z < 0.

ζ(z) = πz−1/2Γ((1− z)/2)

Γ(z/2)
ζ(1− z)

here Γ((1− z)/2) is zero free, Γ(z/2) has only poles at −2,−4, · · ·

Proposition 12.14. ζ(z) ̸= 0 on Re z = 1

Proof. PNT

Corollary 12.15. ζ(z) ̸= 0 on Re z = 0

Proof. let z = iy
if y ̸= 0, Γ((1− iy)/2) ̸= 0, Γ(iy/2) has no pole, ζ(1− iy) ̸= 0
near y = 0, Γ(1/2) =

√
π, Γ(1− z) ≈ 1/z, Γ(z/2) ≈ 1/z, ζ(z) ̸= 0

Proposition 12.16 (Riemann’s conjecture). ζ(z) = 0 in 0 ≤ Re z ≤ 1 only if

Re z =
1

2

13 Lecture 13 (11.19) - Conformal Mappings
Too many pictures. skipped.
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14 Lecture 14 (11.21)

15 Lecture 15 (11.26)

16 Lecture 16 (12.3) - Roche

17 Lecture 17 (12.5) - Elliptic Functions

18 Lecture 18 (12.10)

19 Lecture 19 (12.17)
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