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复变函数第二次期中考试 (a proof of prime number theorem)

1. (Product formula) Let Γ(s) be the gamma function, and ζ(s) the Riemann zeta function.

(a) (2 pts) Prove that for z ∈ C,
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(Hint: Theorem 2.2 in Page 170 of Stein; Poisson summation formula.)
(b) (2 pts) Define
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Prove that for n = 1, 2, · · · ,
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.

In particular, lim
n→∞

− ln |A2n|
2n ln 2n ≥ 1.

(c) (1 pt) Define M(r) := max|s|≤r |Ξ(s)|. Prove that

lim
r→+∞

ln lnM(r)

ln r ≤ 1.

(d) (1 pt) For each r > 0, denote by n(r) the number of the zeros of Ξ(s) inside the closed disc
{|s| ≤ r}. Prove that for any δ > 0, there is a constant Cδ > 0 such that

n(r) ≤ Cδ · r1+δ, ∀r > 0.

(Hint: Apply maximal principle to g(s) := Ξ(s)(
1− s

z1

)(
1− s

z2

)
···

(
1− s

zn(r)

) where z1, · · · , zn(r) are zeros

of Ξ(s) inside {|s| ≤ r}.)
(e) (1 pt) Denote by α1, α2, · · · , αn, · · · the zeros of Ξ(s). Prove that for any δ > 0,
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(f) (1 pt) Prove that
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(Hint: Hadamard’s effective version of Weierstrass’s product theorem.)

2. (1 pt) (Non-vanishing of the zeta function on the line ℜs = 1) Prove that the Riemann zeta function
ζ(s) has no zero on the line ℜs = 1. (Hint: Page 185 in Stein.)
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3. (Reduction to the asymptotic of ψ2(x) as x→ +∞) Define arithmetic functions

A(x) :=
∑

primes p≤x

ln p · ln x
p
,

θ(x) :=
∑

primes p≤x

ln p,

π(x) := the number of primes less than or equal to x.

(a) (1 pt) If θ(x) ∼ x as x→ +∞, then π(x) ∼ x
ln x as x→ +∞. (Hint: θ(x) ≥

∑
x1−ϵ≤p≤x ln p.)

(b) (1 pt) If A(x) ∼ x as x→ +∞, then θ(x) ∼ x as x→ +∞. (Hint: Consider A(x+ xh)−A(x).)
(c) (1 pt) Prove that ∀a > 0,
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(Hint: Page 192 in Stein.)
(d) (1 pt) For a > 1, define
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Prove that A(x) ∼ ψ2(x) as x→ +∞. (Hint: When ℜs > 1, ζ(s) =
∏

primes p
1

1−p−s )

4. (The asymptotic of ψ2(x) as x → +∞) According to Problems 1(e) and 2, ∀ϵ > 0, we can choose
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zeros ρ of ζ(s) such that |ℜρ|>θ or |ℑρ|>Θ

1

|ρ|2
< ϵ.
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where Ca,b,u,x := ABGECDFHA is given as follows.

Figure 1: Contour integral

(a) (3 pts) Prove that there is a sequence u1 < u2 < · · · < uk < · · · of real numbers tending to infinity
such that on the segments BG and AH (with u = uk) our integral tends to zero. (Hint: Prove
that

∣∣∣ ζ′(s)
ζ(s)

∣∣∣ ≤ c · uk(lnuk)2 on BG and AH for k = 1, 2, · · · .)



2024 春，复变函数，第二次期中考试 Page 3 of 3

(b) (1 pt) Prove that on the segments GE and FH our integral tends to zero as x, u → +∞. (Hint:
Prove that

∣∣∣ ζ′(s)
ζ(s)

∣∣∣ ≤ c · |s| on GE and FH as x, u→ +∞.)

(c) (2 pts) Prove that on the segments EC, CD, and DF our integral tends to zero as x → +∞.
(Hint: Prove that for any δ > 0, there is a constant c > 0 such that |(s− 1)ζ(s)| ≤ c · ec|s|1+δ for
all s ∈ C.)

(d) (1 pt) Prove that ψ2(x) ∼ x as x→ +∞. (Hint: Compute the residue.)


